Computational Learning Theory and Language Acquisition

Alexander Clark1 and Shalom Lappin2

1 Department of Computer Science,
Royal Holloway, University of London
alexc@cs.rhul.ac.uk

2 Department of Philosophy,
King’s College, London
shalom.lappin@kcl.ac.uk

Acknowledgement. We are grateful to Richard Sproat for his careful reading of an earlier draft of this chapter, and for his invaluable suggestions for correction. Of course we bear sole responsibility for the content of the chapter.

1 Introduction

Computational learning theory explores the limits of learnability. Studying language acquisition from this perspective involves identifying classes of languages that are learnable from the available data, within the limits of time and computational resources available to the learner. Different models of learning can yield radically different learnability results, where these depend on the assumptions of the model about the nature of the learning process, and the data, time, and resources that learners have access to. To the extent that such assumptions accurately reflect human language learning, a model that invokes them can offer important insights into the formal properties of natural languages, and the way in which their representations might be efficiently acquired.

In this chapter we consider several computational learning models that have been applied to the language learning task. Some of these have yielded results that suggest that the class of natural languages cannot be efficiently...
learned from the primary linguistic data (PLD) available to children, through
domain general methods of induction. Several linguists have used these res-
ults to motivate the claim that language acquisition requires a strong set of
language specific learning biases, encoded in a biologically evolved language
faculty that specifies the set of possible languages through a Universal Gram-
mar.¹

In fact, when the assumptions underlying these models are carefully ex-
amined, we find that they involve highly implausible claims about the nature
of human language learning, and the representation of the class of natural lan-
guages. Replacing these models with ones that correspond to a more realistic
view of the human learning process greatly enhances the prospect for effi-
cient language learning with domain general induction procedures, informed
by comparatively weak language specific biases. Specifically, various proced-
ures based on the ideas of distributional learning show that significant classes
of languages can be learned.

2 Linguistic Nativism and Formal Models of Learning

The view that a set of strong language specific learning biases is a necessary
condition for language acquisition can be described as linguistic nativism. This
view has been endorsed by, inter alia, Chomsky (1965, 1975, 1981, 1995, 2000,
(1996), Nowak et al. (2001), Pinker (1984), Pinker & Jackendoff (2005), and
Yang (2002). It has been dominant in linguistics and cognitive psychology for
the past fifty years. One of the central motivations for this view is the claim
that if children were equipped only with domain general learning procedures of
the sort that they employ to achieve many kinds of non-linguistic knowledge,
they would not be able to acquire the complex grammars that represent the
linguistic competence of native speakers. The argument takes domain general
inductive learning of grammar to be ruled out by limitations on the primary
linguistic data (PLD) to which children are exposed, and restrictions on the
resources of time and computation available to them. This view is commonly
known as the argument from the poverty of the stimulus (APS).

There are several different versions of the APS, each of which focuses
on a distinct aspect of the way in which the PLD underdetermines the lin-
guistic knowledge that a mature native speaker of a language acquires.² In
this chapter we are concerned with the APS as a problem in formal learning

¹ For a discussion of the relevance of current work in computational learning theory
to grammar induction, see Clark & Lappin (2010a). For a detailed discussion of
the connection between computational learning theory and linguistic nativism,
see Clark & Lappin (2010b).

² See, for example, Laurence & Margolis (2001), Pullum & Scholz (2002), and Crain
& Pietroski (2002) for alternative statements of the APS.
theory, and we adopt the computational formulation of this argument given in Clark & Lappin (2010b).

(1) a. Children acquire knowledge of natural language either through domain general learning algorithms or through procedures with strong language specific learning biases that encode the form of a possible grammar.

b. There are no domain general algorithms that could learn natural languages from the primary linguistic data.

c. Children do learn natural languages from primary linguistic data.

d. Therefore children use learning algorithms with strong language specific learning biases that encode the form of a possible grammar.

Some linguists and psychologists have invoked learning theoretic considerations to motivate this version of the APS. So Wexler (1999), apparently referring to some of Gold (1967)'s results, states that

The strongest most central arguments for innateness thus continue to be the arguments from APS and learnability theory. . . . The basic results of the field include the demonstration that without serious constraints on the nature of human grammar, no possible learning mechanism can in fact learn the class of human grammars.

As we will see in Section 3, Gold’s results do not entail linguistic nativism. Moreover, his model is highly problematic if taken as a theory of human language learning.

At the other extreme, several linguists have insisted that learning theory has little, if anything of substance to contribute to our understanding of language acquisition. On their approach, we must rely entirely on the empirical insights of psychological and linguistic research in attempting to explain this process. So Yang (2008) maintains that

In any case, the fundamental problem in language acquisition remains empirical and linguistic, and I don’t see any obvious reason to believe that the solution lies in the learning model, be it probabilistic or otherwise.

We suggest that computational learning theory does not motivate strong linguistic nativism, nor is it irrelevant to the task of understanding language acquisition. It will not provide an explanation of this phenomenon. As Yang observes, it is not a substitute for a good psycholinguistic account of the facts. However, it can clarify the class of natural language representations that are efficiently learnable from the PLD. There are a number of important points to keep in mind when considering learning theory as a possible source of insight into language acquisition.

First, as we have already mentioned, a formal learning model is only as good as its basic assumptions concerning the nature of learning, the computational resources with which learners are endowed, and the data available to them. To the extent that these assumptions accurately reflect the situation
of human language learners, the models are informative as mathematical and computational idealizations that indicate the limits of learning in that situation. If they significantly distort important aspects of the human learning context, then the results that they yield will be correspondingly unenlightening in what they tell us about the formal properties of acquisition.

Second, at least some advocates of the APS as an argument for linguistic nativism conflate learnability of the class of natural languages with learnability of a particular grammar formalism. While a formalism may indeed be unlearnable, given reasonable conditions on data, domain general induction procedures, and computational resources, this does not, in itself, show us anything about the learnability of the class of natural languages. In order to motivate an interesting unlearnability claim of the latter sort, it is necessary to show that the formalism in question (or a theory of grammar formulated in this formalism) is the best available representation of the class of natural languages. Establishing such a claim is exceedingly difficult, given that we have yet to achieve even a descriptively adequate grammar for a single language. In its absence, attempting to support the APS on the grounds that a particular grammar formalism is unlearnable from the PLD is vacuous.

Third, it is has often been assumed that the class of natural languages must be identified either with one of the classes in the Chomsky hierarchy of formal languages, or with a class easily definable in terms of this hierarchy. In fact, there is no reason to accept this assumption. As we will see in subsequent sections, there are efficiently learnable classes of languages that run orthogonal to the elements of the Chomsky hierarchy (or are proper subsets of them), and which may be candidates for superset of the class of natural languages.

Fourth, it is necessary to impose reasonable upper and lower bounds on the degree of difficulty that a learning model imposes on the language learning task. At the lower bound, we want to exclude learning models that trivialize the learning task by neglecting important limitations on the learning process. As we shall see, it is easy to construct models in which almost any class of languages is learnable. Such models are both inaccurate and unhelpful, because they do not constrain or guide our research in any way. At the upper bound we want to avoid theories on which learning is impossibly difficult. Given that humans do achieve the task we seek to model formally, our learning theory must allow for acquisition. If our model does not permit learning, then it is clearly false.

Finally, it is important to distinguish the hypothesis space from which a learning algorithm can select candidate representations of a language, from the

3 Berwick & Chomsky (2009) identify language acquisition with achieving knowledge of a transformational grammar of a particular kind. See Clark & Lappin (2010b), Chapter 2 for a critical discussion of this and other theory-internal instances of the APS.

4 See Wintner (2010) for a discussion of the Chomsky hierarchy within formal language theory.
class of languages that it can learn. The learning model imposes constraints that (partially) specify the latter class, but these do not prevent the algorithm from generating hypotheses that fall outside that class. Indeed in some cases it is impossible for the algorithm to restrict its hypotheses so that they lie inside the learnable class. It is also possible for such an algorithm to learn particular languages that are not elements of its learnable class, with particular data sets. Therefore, the class of learnable languages is generally a proper subset of the hypothesis space (hence of the set of representable languages) for a learning algorithm.

It follows that it is not necessary to incorporate a characterization of the learnable class into a language learner as a condition for its learning a specified class of languages. The design of the learner will limit it to the acquisition of a certain class, given data sets of a particular type. However, the design need not specify the learnable class, but only a hypothesis class that might be very much larger than this class.

Moreover, as the set of learnable languages for an algorithm may vary with its input data, this set corresponds to a relational property, rather than to a data invariant feature of the algorithm. In particular, in some models, as the amount of data increases, the class of languages that an algorithm can learn from that quantity of data will also expand. Therefore, only a range of learnable classes of languages, rather than a particular learnable class, can be regarded as intrinsic to the design of a learner.\(^5\)

The tendency to reduce the hypothesis space of a learner to its learnable class runs through the history of the APS, as does the belief that human learners are innately restricted to a narrow class of learnable languages, independently of the PLD to which they are exposed. Neither claim is tenable from a learning theoretic perspective. To the extent that these claims lack independent motivation, they offer no basis for linguistic nativism.

We now turn to a discussion of classical models of learning theory and a critical examination of their defining assumptions. We start with Gold’s Identification in the Limit paradigm.

3 Gold’s Identification in the Limit Framework

We will take a language to be a set of strings, a subset of the set of all possible strings of finite length whose symbols are drawn from a finite alphabet \(\Sigma\). We denote the set of all possible strings by \(\Sigma^*\), and use \(L\) to refer to the subset. In keeping with standard practice, we think of the alphabet \(\Sigma\) as the set of words of a language, and the language as the set of all syntactically

\(^5\) See Clark & Lappin (2010b) Chapter 4, Section 7 for a detailed discussion of the relation between the hypothesis space and the learnable class of an algorithm, and for arguments showing why even the specification of the algorithm’s learnable class cannot be treated as part of its design.
well-formed (grammatical) sentences. However, the formal results we discuss here apply even under different modeling assumptions. So, for example, we might consider \(\Sigma \) to be the set of phonemes of a natural language, and the language to be the set of strings that satisfy the phonotactic constraints of that language.

Gold (1967)'s \textit{identification in the limit} (IIL) paradigm provides the first application of computational learning theory to the language learning task. In this paradigm a language \(L \) consists of a set of strings, and an infinite sequence of these strings is a \textit{presentation} of \(L \). The sequence can be written \(s_1, s_2, \ldots \), and every string of a language must appear at least once in the presentation. The learner observes the strings of a presentation one at a time, and on the basis of this evidence, he/she must, at each step, propose a hypothesis for the identity of the language. Given the first string \(s_1 \), the learner produces a hypothesis \(G_1 \), in response to \(s_2 \). He/she will, on the basis of \(s_1 \) and \(s_2 \), generate \(G_2 \), and so on.

For a language \(L \) and a presentation of that language \(s_1, s_2, \ldots \), the learner identifies in the limit the language \(L \), iff there is some \(N \) such that for all \(n > N \), \(G_n = G_N \), and \(G_N \) is a correct representation of \(L \). IIL requires that a learner converge on the correct representation \(G_L \) of a language \(L \) in a finite but unbounded period of time, on the basis of an unbounded sequence of data samples, and, after constructing \(G_L \), he/she does not depart from it in response to subsequent data. A learner identifies in the limit the class of languages \(L \) iff the learner can identify in the limit every \(L \in \mathcal{L} \), for every presentation of strings in the alphabet \(\Sigma \) of \(L \). Questions of learnability concern classes of languages, rather than individual elements of a class.

The strings in a presentation can be selected in any order, so the presentation can be arranged in a way that subverts learning. For example, the first string can recur an unbounded number of times before it is followed by other strings in the language. In order for a class to be learnable in the IIL, it must be possible to learn all of its elements on any presentation of their strings, including those that have been structured in an adversarial manner designed to frustrate learning.

Gold specifies several alternative models within the IIL framework. We will limit our discussion to two of these: the case where the learner receives positive evidence only, and the one where he/she receives both positive and negative evidence.

\subsection*{3.1 The Positive Evidence Only Model}

In the positive evidence only variant of IIL presentations consist only of the strings in a language. Gold proves two positive learnability results for this model. Let a \textit{finite language} be one which contains a finite number of strings. This class is clearly infinite, as there are an infinite number of finite subsets of the set of all strings. Gold shows that
Gold Result 1:
The class of finite languages is identifiable in the limit on the basis of positive evidence only.

The proof of (2) is straightforward. Gold assumes a rote learning algorithm for this class of languages. When the learner sees a string in a presentation, he/she adds it to the set which specifies the representation of the language if it has not appeared previously. At point p_i in the presentation, the learner returns as his/her hypothesis $G_i = \text{the set of all strings presented up to } p_i$. If L has k elements, then for any presentation of L, there is a finite point p_N at which every element of L has appeared at least once. At this point G_N will be correct, and it will not change, as no new strings will occur in the presentation.

We can prove a second positive result in this model for any finite class of languages. In contrast to the class of finite languages, these classes have a finite number of languages, but may contain infinite languages. We will restrict ourselves throughout this chapter to recursive languages which are defined by the minimal condition that an effective decision procedure exists for deciding membership in the language for any string.

Gold Result 2:
A finite class of recursive languages is identifiable in the limit on the basis of positive evidence only.

To prove (3) we invoke a less trivial algorithm than the rote learning procedure used to demonstrate (2). Assume that L is a finite class of languages, and its elements are ordered by size, so that if $L_i \subset L_j$, then L_i occurs before L_j. Initially the learning algorithm A has a list of all possible languages in L, and it returns the first element in that list compatible with the presentation. As A observes each string s_i in the presentation, it removes from the list all of the languages that do not contain s_i. Eventually it will remove all languages except the correct one L, and the languages that are supersets of L. Given the ordering of the list, A returns L, the smallest member of the list that is compatible with the presentation, which is the correct hypothesis.

The best known and most influential Gold theorem for the positive evidence only model is a negative result for supra-finite classes of languages. Such a class contains all finite languages and at least one infinite language. Gold proves that

Gold Result 3:
A supra-finite class of languages is not identifiable in the limit on the basis of positive evidence only.

The proof of (4) consists in generating a contradiction from the assumptions that (i) a class is supra-finite, and (ii) it can be learned in the limit. Take L to be a supra-finite class of languages, and let $L_{inf} \in L$ be an infinite language. Suppose that there is an algorithm A that can identify L in the
limit. We construct a presentation on which A fails to converge, which entails that there can be no such A.

Start with the string s_1, where $L_1 = \{s_1\}$ is one of the languages in \mathcal{L}. Repeat s_1 until A starts to produce a representation for L_1 (the presentation will start s_1, s_1, \ldots). If A never predicts L_1, then it will not identify L_1 in the limit, contrary to our assumption. If it does predict L_1, then start generating s_2 until it predicts the finite language $L_2 = \{s_1, s_2\}$. This procedure continues indefinitely, with the presentation $s_1, \ldots, s_2, \ldots, s_3, \ldots$. The number of repetitions of each s_i is sufficiently large to insure that A generates, at some point, the corresponding language $L_i = \{s_1, \ldots, s_i\}$. This presentation is of the language L_{inf}, which is infinite. But the algorithm will continue predicting ever larger finite subsets of L_{inf} of the form L_i. Therefore, A will never produce a representation for the infinite language L_{inf}.

Notice that we cannot use the algorithm A that Gold employs to prove (3) in order to establish that a class of supra-finite languages is identifiable in the limit. This is because a supra-finite class contains the infinite set of all finite languages as a proper subset. If these are ordered in a list by size, and the infinite languages in the class are then ordered as successively larger supersets of the finite elements of this infinite class, then, for any given infinite language L_{inf}, A will never finish identifying its infinite set of finite language subsets in the list to arrive at L_{inf}.

3.2 The Negative Evidence Model

In Gold’s negative evidence (informant) model, a presentation of a language L contains the full set of strings Σ^* generated by the alphabet Σ of L, and each string is labeled for membership either in L, or in its complement L'. Therefore, the learner has access to negative evidence for all non-strings of L in Σ^*. Gold proves that

(5) **Gold Result 4:**

The class of recursive languages is identifiable in the limit in the model in which the learner has access to both positive and negative evidence for each string in a presentation.

Gold proves (5) by specifying an algorithm that identifies in the limit the elements of this class. He takes the enumeration of the class to be an infinite list in which the representations of the language class are ordered without respect to size or computational power. At each point p_i in a presentation the algorithm returns the first representation of a language in the list that is compatible with the data observed up to p_i. This data includes labels for all strings in the sequence $p_1 \ldots p_i$. A representation G_i of a language is compatible with this sequence iff it labels its strings correctly.

The algorithm returns the first G_i in the list that is compatible with the data in the presentation. Because the presentation contains both the strings
of the target language L and the non-strings generated by its alphabet, at some point p_j one of the data samples will rule out all representations in the list that precede G_L, and all samples that follow p_j will be compatible with G_L. Therefore, this algorithm will make only a finite number of errors. The upper bound on the errors that it can make for a presentation corresponds to the integer marking the position of the target representation in the ordered list.

Assume, for example, that L_{fs} is a finite state language which includes the strings of the context-free language L_{cf} as a proper subset. This is the case if $L_{fs} = \{a^nb^m | n, m > 0\}$ and $L_{cf} = \{a^nb^n | n > 0\}$. Let G_{fs} precede G_{cf} in the list of representations for the class. At some point in a presentation for L_{cf} a string labeled as not in the language will appear that is accepted by G_{fs}. As a result, the algorithm will discard G_{fs}, and, by the same process, all other elements of the list, until it arrives at G_{cf}. After this point all data samples will be labeled in accordance with G_{cf}, and so the algorithm will return it. If only positive evidence were contained in the presentation of L_{cf}, all of the data samples would be compatible with G_{fs}, and the algorithm would not be able to identify G_{cf} in the limit. The class of recursive languages includes the class of context-sensitive languages as a proper subset. To date no natural language has been discovered whose formal syntactic properties exhibit more than context-sensitive resources, and so it seems reasonable to conjecture that natural languages constitute a proper subset of this latter class. Therefore, (5) implies that, with negative evidence for all strings in a language, any natural language can be identified in the limit by the simple learning algorithm that Gold describes.

The negative evidence variant of IIL is an instance in which learning is trivialized by an excessively powerful assumption concerning the sort of evidence that is available to the learner. It is clear that the PLD to which children are exposed does not consist of sentence-label pairs in which every string constructed from the alphabet of the language is identified as grammatical or as ill formed. Whether or not negative evidence of any kind plays a significant role in language acquisition remains a highly controversial issue in psycholinguistics.\(^6\) Even if we assume that certain types of negative evidence are available, it is clear that Gold’s full informant model of IIL does not offer a plausible view of the PLD that provides the basis for human language acquisition.

3.3 The Positive Evidence Only Model and Learning Biases

Some linguists have used Gold’s proof that a supra-finite class of languages is not identifiable in the limit as grounds for positing a rich set of prior con-

\(^6\) See Clark & Lappin (2010b), Chapter 3, Section 3.2 for detailed discussion of this issue, as well as Chapter 6 for a proposed stochastic model of indirect negative evidence.
strains on the human language learning mechanism. So, for example, Matthews (1989) states:

[pp 59-60] The significance of Gold’s result becomes apparent if one considers that (i) empiricists assume that there are no constraints on the class of possible natural languages (...), and (ii) Gold’s result assumes that the learner employs a maximally powerful learning strategy (...). These two facts ... effectively dispose of the empiricist claim that there exists a “discovery procedure” capable of discovering a grammar for any natural language solely by analyzing a text of that language. This claim can be salvaged but only at the price of abandoning the empiricist program, since one must abandon the assumption that the class of possible languages is relatively unconstrained.

Advocates of linguistic nativism go on to insist that these learning biases must specify the hypothesis space of possible natural languages, and determine a task particular algorithm for selecting elements from this space for given PLD, as necessary conditions for language acquisition. Nowak et al. (2001) claim the following.

Universal grammar consists of (i) a mechanism to generate a search space for all candidate mental grammars and (ii) a learning procedure that specifies how to evaluate the sample sentences. Universal grammar is not learned but is required for language learning. It is innate.

In fact, these conclusions are not well motivated. They depend upon assumptions that are open to serious challenge. First, Gold’s negative result concerning supra-finite languages is significant for language acquisition only if one assumes that the class of natural languages is supra-finite, as are the language classes of the Chomsky hierarchy. This need not be the case. A set of languages can be a proper subset of one these classes such that it is a finite class containing infinite languages. In this case, it is not supra-finite, but it is identifiable in the limit. Moreover, it may contain representations that converge on the grammars of natural language.

So, for example, Clark & Eyraud (2007) define the class of substitutable languages, which is a proper subset of the class of context free languages. The grammars of these languages can generate and recognize complex syntactic structures, like relative clauses and polar interrogative questions. Clark & Eyraud (2007) specify a simple algorithm for learning substitutable languages from well formed strings (positive data only). They show that the algorithm identifies in the limit the class of substitutable languages in time polynomial to the required data samples, from a number of samples polynomially bounded by the size of the grammar.

Second, Gold’s positive evidence only version of IIL is not a plausible framework for modeling human language acquisition. It is both too demanding of the learner, and too permissive of the resources that it allows him/her. Its excessive rigor consists in the condition that for a class to be identifiable in the limit, all of its elements must be learnable under every presentation.
Therefore, learning is required even when a data presentation is designed in an adversarial mode to sabotage learning. As Gold notes, if we discard this condition and restrict the set of possible presentations to those that promote learning, then we can significantly expand the class of learnable languages, even in the positive evidence only model. Children are not generally subjected to adversarial data conditions, and if they are, learning can be seriously impaired. Therefore, there is no reason to demand learning under every presentation.

Conversely, IIL allows learners unbounded amounts of computational complexity in time and data samples. Identification need only be achieved in the limit, at some bounded point in a presentation. This feature of Gold’s framework is unrealistic, given that humans learn under serious restrictions in time, data, and computational power. In order to approximate the human learning process, we need to require that learning be efficient.

Third, as we noted in Section 2, the hypothesis space for a learning algorithm cannot be reduced to the class of representations that it can learn. A grammar induction procedure can generate hypotheses that represent languages outside of its learnable class. It may even learn such languages on particular presentations, but not on all of them.

Finally, the positive evidence only IIL paradigm is too restrictive in requiring exact identification of the target language. Convergence on a particular adult grammar is rarely, if ever, complete. A more realistic approach characterizes learning as a process of probabilistic inference in which the learner attempts to maximize the likelihood of a hypothesis, given the data that it is intended to cover, while seeking to minimize its error rate for this data. We will consider probabilistic learning theories in the next two sections.

4 Probabilistic Models and Realistic Assumptions about Human Learning

One of the limitations of the Gold model is that the learner must identify the target under every possible presentation. Therefore, he/she is required to succeed even when the sequence of examples is selected in order to make the learning task as difficult as possible, ie. even when the teacher is an adversary who is trying to make the learner fail. This is a completely unrealistic view of learning. In the human acquisition process adults generate sentences in the child’s environment with an interest, in most cases, in facilitating child learning.

A consequence of the IIL is that it is difficult for the learner to tell when a string is not in the language. Absence of evidence in this model is not

\[7\] Impairment of learning due to an absence of data is particularly clear in the case of feral children, who are deprived of normal linguistic interaction. Perhaps the best known case of such a child is Genie, discussed in Curtiss (1977).
evidence of absence from the language. The fact that the learner has not seen a particular string does not permit him/her to conclude that that string is ill formed. No matter how short a string is, nor how long the learner waits for it, its non-occurrence could be due to the teacher delaying its appearance, rather than ungrammaticality. It is for this reason that, as we have seen, the presence or absence of negative data has such a significant effect on the classes of languages that can be learned within the IIL framework (see Clark & Lappin (2010b) Chapters 3 and 6 for extensive discussion of these issues).

Linguists have been mesmerized by this property of IIL, and they have frequently taken the absence of large amounts of direct negative evidence to be the central fact about language acquisition that motivates the APS (Hornstein & Lightfoot (1981) characterize this issue as the “logical problem of language acquisition”). It is worth noting that it is only in linguistics that the putative absence of negative evidence is considered to be a problem. In other areas of learning it has long been recognised that this is not a particular difficulty. The importance that many linguists assign to negative evidence (more specifically its absence) arises largely because of an unrealistic assumption of the IIL paradigm (Johnson (2004)). From very early on, learning theorists realised that in a more plausible model a learner could infer, from the absence of a particular set of examples, that a grammar should not include some sentences. (Chomsky, 1981, p. 9) states

A not unreasonable acquisition system can be devised with the operative principle that if certain structures or rules fail to be exemplified in relatively simple expressions, where they would expect to be found, then a (possibly marked) option is selected excluding them in the grammar, so that a kind of “negative evidence” can be available even without corrections, adverse reactions etc.

This sort of data has traditionally been called “Indirect Negative Evidence”. The most natural way to formalise the concept of indirect negative evidence is with probability theory. Under reasonable assumptions, which we discuss below, we can infer from the non-occurrence of a particular sentence in the data that the probability of its being grammatical is very low. It may be that the reason that we have not seen a given example is that we have just been unlucky. The string could actually have quite high probability, but by chance we have not seen it. In fact, it is easy to prove that the likelihood of this situation decreases very rapidly to insignificance. But much more needs to be said. Clearly there are technical problems involved in specifying the relationship between probability of occurrence and grammaticality. First, there are an indefinite number of ungrammatical strings and it is not clear how the learner could keep track of all of these, given his/her limited computational resources.

Second, there are ungrammatical strings that do occur in the PLD. Suppose we have an ungrammatical string with a non-zero probability, say ϵ. Since there are, in most cases, an infinite number of strings in the language, there
must be some strings that have probability less than ϵ. In fact, all but finitely many strings will have probability less than ϵ. This leads to the inconvenient fact that the probability of some long grammatical strings will be less than the probability of short ungrammatical ones. Therefore it is clear that we can not simply reduce grammaticality to a particular probability bound.

Returning to the IIL, rather than assuming that the teacher is antagonistic, it seems natural to identify a proper subset as typical or helpful example sequences and require the learner to succeed only on these. It turns out to be difficult to construct a non-trivial model of non-adversarial learning (Goldman & Mathias (1996)). A more realistic approach is to assume that the data has a probabilistic (random) dimension to it. There is much current interest in probabilistic models of language (Bod et al. (2003)). We remain neutral as to whether linguistic competence itself should be modeled probabilistically, or categorically as a grammar, with probabilities incorporated into the performance component. Here we are concerned with probabilistic properties of the input data and the learning process, rather than the target that is acquired.

If we move to a probabilistic learning paradigm, then the problem of negative evidence largely disappears. The most basic form of probabilistic learning is Maximum Likelihood Estimation (MLE), where we select the model (or set of parameters for a model) that makes the data most likely. When a fixed set of data D (which here corresponds to a sequence of grammatical sentences) is given, the learner chooses an element, from a restricted set of models, that maximises the probability of the data, given that model (this probability value is the likelihood of the model). The MLE approach has an important effect. The smaller the set of strings that the model generates, while still including the data, the higher is its likelihood for that data. To take a trivial example, suppose that there are 5 types of sentences that we could observe, and we see only three of them. A model that assigns a probability of $1/3$ to each of the three types that we encounter, and zero probability to the two unseen types, will have higher likelihood than one which gives $1/5$ to each of the 5 types. This example illustrates the obvious fact that we do not need explicit negative data to learn that some types do not occur (a point developed more compellingly and more thoroughly in, inter alia, Abney (1996); Pereira (2000)).

When we are concerned with cases, as in language acquisition, where there are an unbounded or infinite number of sentence types, it is important to limit the class of models that we can select from. There are many closely related techniques for doing this (like Bayesian model selection and Minimum Description Length), where these techniques enjoy different levels of theoretical support. They all share a common insight. We need to consider not just the likelihood of the model given the data, but we must also take into account the model’s size and complexity. Larger and more complex models have to be justified by additional empirical coverage (Goldsmith (2001)).

In statistical modeling it is standard to regard the data as independently and identically distributed. This it the IID assumption. It entails that for
language acquisition there is a fixed distribution over sentences, and each sentence is chosen randomly from this distribution, with no dependency on the previous example. This claim is clearly false. The distribution of examples does change over time. The relative probabilities of hearing “Good Morning” and “Good Night” depend on the time of day, and there are numerous important inter-sentential dependencies, such as question answer pairs in dialogue.

Many linguists find the IID objectionable for these reasons. In fact, we can defend the IID as an idealization that approximates the facts over large quantities of data. All we need is for the law of large numbers to hold so that the frequency of occurrence of a string will converge to its expected value rapidly. If this is the case, then the effect of the local dependencies among sentences in discourse will be eliminated as the size of the data sample increases. This view of the IID offers a much weaker understanding of the independence conditions than the claim that the sentences of a distribution are generated in full independence of each other. It is a view that applies to a large class of stochastic processes.

Moreover if we can prove learnability under the IID assumption, then we can prove learnability under any other reasonable set of assumptions concerning the distributions of the data as well. Therefore, if we are modeling the acquisition of syntax (i.e. intra-sentential structure), then it is reasonable to neglect the role of inter-sentential dependencies (at least initially). We assume then that there is a fixed distribution. For each string we have a probability. The distribution is just the set of probabilities for all strings in a data set, more accurately, a function that assigns a probability to each string in the set.

To avoid confusion we note that in this chapter we use the word distribution in two entirely different senses. In this section a distribution is a probability distribution over the set of all strings, a function $D : \Sigma^* \to [0, 1]$, such that the sum over all string of D is equal to 1. In later sections we use distribution in the linguistic sense to refer to the set of environments in which a string can occur.

There are a number of standard models of probabilistic learning that are used in machine learning. The best known of these is the PAC-learning paradigm (Valiant (1984)), where ‘PAC’ stands for Probably and Approximately Correct. The paradigm recognises the fact that if data is selected randomly, then success in learning is random. On occasion the random data that you receive will be inadequate for learning. Unlike the case in IIL, in the PAC framework the learner is not required to learn the target language exactly, but to converge to it probabilistically. This aspect of the paradigm seems particularly well-suited to the task of language learning, but some of its other features rule it out as an appropriate framework for modeling acquisition.

PAC models study learning from labeled data in which each data point is marked for membership or non-membership in the target language. The problem here is, of course, the fact that few, if any, sentences in the PLD are explicitly marked for grammaticality.
A second difficulty is that PAC results rely on the assumption that learning must be (uniformly) possible for all probability distributions over the data. On this assumption, although there is a single fixed distribution, it could be any one in the set of possible distributions. This property of PAC-learning entails that no information can be extracted from the actual probability values assigned to the strings of a language. Any language can receive any probability distribution, and so the primary informational burden of the data is concentrated in the labeling of the strings. The actual human learning context inverts this state of affairs. The data arrives unlabeled, and the primary source of the information that supports learning is the probability distribution that is assigned to the observed strings of the PLD. Therefore, despite its importance in learning theory and the elegance of its formal results, the classical version of PAC-learning has no direct application to the acquisition task. However PAC’s convergence measure will be a useful element of a more realistic model.

If we consider further the properties of learnability in the PAC paradigm, we encounter additional problems. A class is PAC learnable if and only if it has a finite VC-dimension, where its VC-dimension is a combinatorial property of the class (see Lappin & Shieber (2007) and Clark & Lappin (2010b), Chapter 5 for characterizations of VC-dimension and discussions of its significance for language learning in the PAC framework). A finite class of languages has finite VC-dimension, and so one way of achieving PAC learnability is to impose a cardinality bound on the target class. So, for example, we might limit the target class to the set of all context-sensitive languages whose description length, when written down, is less than some constant n, the class CS_n. The class of all context-sensitive languages CS has infinite VC-dimension, but we can consider it as the union of a gradually increasing set of classes, $CS = \bigcup_n CS_n$. On the basis of this property of PAC-learning one might be tempted to argue along the following lines for a strong learning bias in language acquisition. As CS has infinite VC-dimension it is not learnable. Therefore the class of languages must be restricted to a member of the set of CS_ns for some n. It follows that language learners must have prior knowledge of the bound n in order to restrict the hypothesis space for grammar induction to the set of CS_ns.

This argument is unsound. In fact a standard result of computational learning theory shows that the learner does not need to know the cardinality bound of the target class. (Haussler et al., 1991). As the amount of available data increases, the learner can gradually expand the set of hypotheses that he/she considers. If the target is in the class CS_n, then the learner will start to consider hypotheses of size n when he/she has access to a sufficiently large amount of data. The size of the hypotheses that he/she constructs grows in proportion to the amount of data he/she observes. A prior cardinality restriction on the hypothesis space is unnecessary.

This point becomes clear when we replace CS with the class of finite languages represented as a list, FIN. A trivial rote learning algorithm can
converge on this class by memorising each observed example for any of its elements. This procedure will learn every element of \(FIN \) without requiring prior information on the upper bound for the size of a target language, though \(FIN \) has unbounded VC-dimension.

More appropriate learning models yield positive results that show that large classes of languages can be learned, if we restrict the distribution for a language in a reasonable way. One influential line of work looks at the learnability of distributions. On this approach what is learned is not the language itself, but rather the distribution of examples (i.e. a stochastic language model).

Angluin (1988) and Chater & Vitányi (2007) extend Horning (1969)’s early work on probabilistic grammatical inference. Their results show that, if we set aside issues of computational complexity, and restrict the set of distributions appropriately, then it is possible to learn classes of grammars that are large enough to include the set of natural languages as a subclass.

As Angluin (1988) says:

> These results suggest the presence of probabilistic data largely compensates for the absence of negative data.

Angluin (1988) also considers the learnability of languages under a stochastic version of IIL. She shows, somewhat surprisingly, that Gold’s negative results remain in force even in this revised framework. Specifically, she demonstrates that any presentation on which an IIL learner fails can be converted into a special distribution under which a stochastic learner will also not succeed. This result clearly indicates the importance of selecting a realistic set of distributions under which learning is expected. If we require learning even when a distribution is perverse and designed to sabotage acquisition, then we end up with a stochastic learning paradigm that is as implausible as IIL.

The negative results that we derive from either the IIL paradigm or from PAC-learning suffer from an additional important flaw. They do not give us any guide to the class of representations that we should use for the target class, nor do they offer insight into the sort of algorithms that can learn such representations. This is not surprising. Although IIL was originally proposed as a formal model of language acquisition, it quickly became apparent that the framework applies more generally to the task of learning any collection of infinitely many objects. The inductive inference community focuses on learnability of sets of numbers, rather than on sets of strings. Similarly PAC-learning is relevant to every domain of supervised learning. Since these frameworks are not designed specifically for language acquisition, it is to be expected that they have very limited relevance to the construction of a language learning model.
5 Computational Complexity and Efficiency in Language Acquisition

An important constraint on the learner that we have not yet considered is computational complexity. The child learner has limited computational resources and time (a few years) with which to learn his/her language. These conditions impose serious restrictions on the algorithms that the learner can use. These restrictions apply not just to language acquisition, but to other cognitive processes. The Tractable Cognition Thesis (van Rooij (2008)) is uncontroversial.

Human cognitive capacities are constrained by the fact that humans are finite systems with limited resources for computation.

However, it is not obvious which measure of complexity provides the most appropriate standard for assessing tractability in human computation. Putting aside for a moment the problem of how to formulate the tractability thesis precisely for language acquisition, its consequences are clear. An algorithm that violates this thesis should be rejected as empirically unsound. An inefficient algorithm corresponds to a processing method that a child cannot use, as it requires the ability to perform unrealistic amounts of computation.

It is standard in both computer science and cognitive science to characterise efficient computation as a procedure in which the amount of processing required increases relatively slowly in relation to the growth of an input for a given task. A procedure is generally regarded as tractable if it is bounded by a polynomial function on the size of its input, for the worst processing case. This condition expresses the requirement that computation grow slowly in proportion to the expansion of data, so that it is possible to solve large problems within reasonable limits of time. If the amount of processing that an algorithm \(\mathcal{A} \) performs grows very rapidly, by an exponential function on the size of the data, then as the input expands it quickly becomes impossible for \(\mathcal{A} \) to compute a result.

Therefore, we can rule out the possibility that child learners use procedures of exponential complexity. Any theory that requires such a procedure for learning is false, and we can set it aside.\(^8\)

We consider the tractability condition to be the most important requirement for a viable computational model of language acquisition to satisfy. The problems involved in efficient construction of a target representation of a language are more substantial than those posed by achieving access to adequate

\(^8\) There are a number of technical problems to do with formalising the idea of efficient computation in this context. For instance, the number data samples that the learner is exposed to increases, and the length of each sample is potentially unbounded. There is no point to restricting the quantity of data that we use at each step in the algorithm, unless we also limit the total size of the data set, and the length of each sample in it.
amounts of data. Efficiency of learning is a very hard problem, and it arises in all learning models, whether or not negative evidence is available.

The computational complexity of learning problems emerges with the least powerful formalisms in the Chomsky hierarchy, the regular languages, and so the more powerful formalisms, like the class of context free (or context sensitive) grammars also suffer from them. These difficulties concern properties of target representations, rather than the language classes as such. It is possible to circumvent some of them by switching to alternative representations which have more tractable learning properties. We will explore this issue in the next section.

There are a number of negative results concerning computational complexity of learning that we will address. Before we do so, we need to register a caveat. All of these results rest on an assumption that a certain class of problem is intrinsically hard to solve. These assumptions, including the famous $P \neq NP$ thesis, are generally held to be true. The results also rely on additional, more obscure presuppositions (such as factoring Blum integers etc.). But these assumptions are not, themselves, proven results, and so we cannot exclude the possibility that efficient algorithms can be devised for at least some of the problems now generally regarded as intractable, although this seems highly unlikely.

The most significant negative complexity results (Gold (1978); Angluin & Kharitonov (1991); Abe & Warmuth (1992); Kearns & Valiant (1994)) show that hard problems can be embedded in the hidden structure of a representation. In particular the results given in Kearns & Valiant (1994) indicate that cryptographically hard problems arise in learning even very simple automata. They entail that the complexity of learning representations is as difficult as code cracking. This suggests that the framework within which these results are obtained does not adequately model human learning. It should distinguish between the supportive environment in which child learners acquire grammar, and the adversarial nature of the code-breaking task. The codes are designed to maximize the difficulty of decryption, while natural languages facilitate acquisition and transmission.

Parametric theories of UG encounter the same complexity issues that other learning models do. Assuming that the hypothesis space of possible grammars is finite does not address the learnability issue. In fact, the proofs of the major negative complexity of learning results proceed by defining a series of finitely parameterised sets of grammars, and demonstrating that they are difficult to learn. Therefore, Principles and Parameters (P&P) based models do not solve the complexity problem at the core of the language acquisition task. Some finite hypothesis spaces are efficiently learnable, while others are not. The view that UG consists of a rich set of innate, language specific learning biases that render acquisition tractable contributes nothing of substance to resolving the learning complexity problem, unless a detailed learning model is specified for which efficient learning can be shown. To date, no such model has been offered.
It is important to recognize that the computational hardness of a class of problems hard does not entail that every problem in the class is intractable. It implies only that there are some sets of problems that are hard, and so we cannot construct an algorithm that will solve every problem in the class uniformly. To take a simple example, suppose that the task is clustering. The items that we are presented with are points in a two dimensional plane, and the “language” corresponds to several roughly circular regions. The learning task is to construct a set of clusters of the data where each cluster includes all and only the points with a particular property. Formally this task is computationally hard, since the clusters may contain substantial overlap. If this is the case, then there may be no alternative to trying every possible clustering of the data. However if the clusters are well-separated, the learning task is easy, and it is one that humans perform very well.

There are provably correct algorithms for identifying clusters that are well-separated, and humans can do this simply by looking at the data on the left of Figure 5. It is easy to draw a circle around each of the three clusters in this diagram. Conversely, when the data are not separated, as in the example on the right of Figure 5, then it is hard to pick out the correct three clusters.

We can represent this difference in hardness by defining a separability parameter. If the centers are well-separated, then the value of the separability parameter will be high, but if they are not, then its value will be low. The parameter allows us to stratify the class of clusters into problems which are easy and those which are hard. Clearly, we do not need to attribute knowledge of this parameter, as a learning prior, to the learner. If the clusters are separated, then the learner will exploit this fact to perform the clustering task, and if they are not, he/she will not succeed in identifying the clusters. From a learnability point of view we could define a class of “learnable clusterings” which are those that are separable. We can prove that an algorithm could learn all of the elements of this class, without incorporating a separability parameter into the algorithm’s design.
The analogy between clustering and language learning is clear. Acquiring even simple language representations may be hard in general. However, there might be parameters that divide easy learning problems from hard ones. Stratifying learning tasks in this way permits us to use such parameters to identify the class of efficiently learnable languages, and to examine the extent to which natural languages form a subset of this class.

6 Efficient Learning

In fact there are some efficient algorithms for learning classes of representations. Angluin & Kharitonov (1991) shows that there is an important distinction between representations with hidden structure, and those whose structure is more readily discernible from data. Angluin (1987) shows that the class of regular languages can be learned using the class of deterministic finite state automata, when there is a reasonably helpful learning paradigm, but the class of non-deterministic automata is not learnable (Angluin & Kharitonov (1991)). In practice DFAs are quite easy to learn from positive data alone, if this data is not designed to make the learner fail. Subsequent work has established that we can learn DFAs from stochastic data alone, with a helpful distribution on the data set.

If we look at the progress that has been made for induction of DFAs, we see the following stages. First, a simple algorithm is given that can learn a restricted class from positive data alone, within a version of the Gold paradigm (Angluin (1982)). Next, a more complex algorithm is specified that uses queries or some form of negative evidence to learn a larger set, in this case the entire class of regular languages (Angluin (1987)). Finally, stochastic evidence is substituted for negative data (Carrasco & Oncina (1999)). This sequence suggests that the core issues in learning concern efficient inference from probabilistic data and assumptions. When these are solved, we will be able to model grammar induction from stochastic evidence as a tractable process. The pattern of progress that we have just described for learning theoretic inference of representation classes is now being followed in the modeling of context free grammar induction.

An important question that remains open is whether we will be able to apply the techniques for efficient learning to representation classes that are better able to accommodate natural languages than DFAs or CFGs. There has been progress towards this goal in recent years, and we will briefly summarize some of this work.

We can gain insight into efficient learnability by looking at the approaches that have been successful for induction of regular languages. These approaches do not learn just any finite state automaton, but they acquire a finite state
automaton that is uniquely determined by the language. For any regular language \(L \) there is a unique minimal DFA that generates it.\(^9\)

In this case, the minimal DFAs, are restricted to only one, and the uniqueness of the device facilitates its learnability. Moreover, they are learnable because the representational primitives of the automaton, its states, correspond to well defined properties of the target language which can be identified from the data. These states are in one-to-one correspondence to what are called the residual languages of the language. Given a language \(L \) and a string \(u \), the residual language for \(u \) of \(L \), written \(u^{-1}(L) \) is defined as \(\{v \mid uv \in L\} \).

This is just the set of those suffixes of \(u \) that form a grammatical string when appended to \(u \). A well known result, the Myhill-Nerode theorem, establishes that the set of residual languages is finite if and only if the language is regular. In the minimal DFA, each state will generate exactly one of these residual languages.

This DFA has a very particular status. We will call it an objective finite automaton. It has the property that the structure of the automaton, though hidden in some sense, is based directly on well defined observable properties of the language that it generates.

Can we specify an analogous objective Context Free Grammar with similar learnability properties? There is a class of Deterministic CFGs, but these have the weaker property that the trees which they generate are traversed from left to right. This condition renders an element of the parsing process deterministic, but it does not secure the learnability result that we need.

To get this result we will pursue a connection with the theory of distributional learning, which is closely associated with the work of Zellig Harris (Harris, 1954), and has also been studied extensively by other structuralist linguists (Wells, 1947; Bar-Hillel, 1950). This theory was originally taken to provide discovery procedures for producing the grammar of a language, but it was soon recognized that its techniques could be used to model elements of language acquisition.

The basic concept of distributional learning is, naturally enough, that of a distribution. We define a context to be a sentence with a hole in it, or, equivalently, as a pair of strings \((l, r)\) where \(l \) represents the string to the left of the hole, and \(r \) represents the one to the right. The distribution of a string \(u \) is just the set of contexts in which it can be substituted for the hole to produce a grammatical sentence, and so \(C_L(u) = \{(l, r) \mid lur \in L\} \). Distributional approaches to learning and grammar were studied extensively in the 1950s. One of the clearest expositions is Bar-Hillel (1950), which is largely concerned with the special case where \(u \) is a single word. In this instance we are learning only a set of lexical categories.

\(^9\) It is possible to relabel the states, but the structure of the automaton is uniquely determined.
Joshua Greenberg was another proponent of distributional learning. Chomsky (1959) lucidly paraphrases Greenberg’s strategy as “let us say that two units A and B are substitutable\(_1\) if there are expressions X and Y such that XAY and XBY are sentences of L; substitutable\(_2\) if whenever XAY is a sentence of L then so is XBY and whenever XBY is a sentence of L so is XAY (i.e. A and B are completely mutually substitutable). These are the simplest and most basic notions.”

In these terms \(u\) is “substitutable\(_1\)” with \(v\) when \(C_L(u) \cap C_L(v)\) is non empty and \(u\) is “substitutable\(_2\)” with \(v\) when \(C_L(u) = C_L(v)\). The latter relation is now called syntactic congruence, and it is easily seen to be an equivalence relation. The equivalence classes for this relation are the congruence classes, expressed as \([u]_L = \{v | C_L(u) = C_L(v)\}\).

It is natural to try to construct an objective context free grammar by requiring that the non-terminals of the grammar correspond to these congruence classes, and this approach has yielded the first significant context free grammatical inference result, presented in Clark & Eyraud (2007). Interestingly, the class of CFG languages that this result shows to be learnable is one for which, in Chomsky’s terms, one form of substitutability implies the other: a language is substitutable if whenever \(A\) and \(B\) are substitutable\(_1\), then they are substitutable\(_2\). This class was precisely defined by Myhill in 1950 (Myhill, 1950), which raises the question of why this elementary result was only demonstrated 50 years after the class was first defined. The delay cannot be plausibly attributed to the technical difficulty in the proof of the result in Clark & Eyraud (2007), as this proof is constructed on direct analogy with the proofs given in Angluin (1982).

Rather the difficulty lies in the fact that linguistic theory has been focused on identifying the constituent syntactic structure of a language, which corresponds to the strong generative capacity of a grammar. This structure cannot be uniquely recovered from the PLD without additional constraints on learning. This is because two CFGs may be equivalent in their weak generative power (i.e. they generate the same set of strings), but differ in their strong generative capacity (they assign distinct structures to at least some of these strings). Therefore, a learner cannot distinguish between weakly equivalent grammars on the basis of the observed evidence.

In order to achieve the learnability result given in Clark & Eyraud (2007) it is necessary to abandon the idea that grammar induction consists in identifying the correct constituent structure of the language. Instead learning is characterized in terms of recovering the distributional structure of the language. This structure is rich enough to describe the ways in which the primitive units of the language combine to form larger units, and so to specify its syntax, but the resulting grammar, and the parse trees that it produces, do not correspond to the traditional constituents of linguistic theory. This may seem to be a defect of the learning model. In fact it isn’t. The constituent structure posited in a particular theory of grammar is itself a theoretical construct invoked to identify the set of grammatical sentences of the language,
as speakers represent them. If we can capture these facts through an alternative representation that is provably learnable, then we have demonstrated the viability of the syntactic structures that this grammar employs.

We have passed over an important question here. We must show show that a learnable grammar is rich enough to support semantic interpretation. We will shortly take up this issue in outline.

In the end, the basic representational assumption of the simple distributional approach is flawed. From a distributional point of view congruence classes give the most fine-grained partitioning of strings into classes that we could devise. Any two strings in a congruence class are fully interchangeable in all contexts, and this condition is rarely, if ever, satisfied. Therefore, a learning algorithm which infers a grammar through identification of these classes will generate representations with large numbers of non-terminals that have very narrow string coverage.

The grammar will also be formally inadequate for capturing the full range of weak generative phenomenon in natural language, because at least some languages contain mildly context sensitive syntactic structures (Shieber, 1985).

Finally, distributional CFGs do not offer an adequate formal basis for semantic interpretation, as neither their tree structures nor their category labels provide the elements of a suitable syntax-semantics interface.

These three considerations indicate that we need a more abstract representation which preserves the learnability properties of the congruence formalism. Our challenge, then, is to combine two putatively incompatible properties: deep, abstract syntactic concepts, and observable, objective structure. It was precisely the apparent conflict between these two requirements that first led Chomsky to discard simple Markov (n-gram) models and adopt linguistic nativism in the form of a strong set of grammar specific learning biases.

In fact there is no intrinsic conflict between the demands of abstract structure on one hand, and categories easily identifiable from the data on the other. Clark (2009) specifies a rich distributional framework that is sufficiently powerful to represent the more abstract general concepts required for natural language syntax, and he demonstrates that this formalism has encouraging learnability properties. It is based on a Syntactic Concept Lattice.

The representational primitives of the formalism correspond to sets of strings, but the full congruence of distributional CFGs is replaced by partial sharing of contexts. This weaker condition still generates a very large number of possible categorial primitives, but, by moving to a context-sensitive formalism, we can compute grammars efficiently with these primitives (Clark (2010)). We refer to these representations as Distributional Lattice Grammars (DLG), and they have two properties that are important for our discussion of language acquisition.

First, the formalism escapes the limitations that we have noted for simple congruence based approaches. DLGs can represent non-deterministic and inherently ambiguous languages such as...
It can encode some non-context free languages (such as a variant of the MIX or Bach language), but it cannot represent all context free languages. The examples of context-free languages that the formalism cannot express are artificial, and they do not correspond to syntactic phenomena that are attested in natural languages.

It is important to recognize that our objective here is not to represent the full set of context free grammars, but to model the class of natural languages. It is not a flaw of the DLG framework that it is not able to express some CFGs, if these do not represent natural languages. In fact, this may be taken as a success of the paradigm (Przedziecki, 2005).

Second, DLGs can be efficiently learned from the data. The current formal results are inadequate in a number of respects. (i) they assume the existence of a membership oracle. The learner is allowed to ask an informant whether a given sentence is grammatical or not. As we discussed above, we consider this to be a reasonable assumption, as long as such queries are restricted in a way that renders them equivalent to indirect negative (stochastic) evidence. (ii) The learnability result is not yet sharp enough. Efficiency is demonstrated for each step in the learning procedure, rather than for the entire process. (iii) Although the formalism exhibits the partial structural completeness that the congruence-based models have, the labels of its parse trees have the rich algebraic structure of a residuated lattice.\(^\text{10}\)

The operations in the lattice include the residuation operators / and \, and the partial order in the lattice allows us to define labeled parse trees, where the labels are “maximal” in the lattice. Ambiguous sentences can therefore be assigned sets of different representations, each of which can support a different interpretation. The theory of categorial grammar tells us how we can do this, and Categorial Grammars are based on the same algebraic structure (Lambek (1958)).

The theory of DLGs is still in its infancy, but for the first time we appear to have a learning paradigm that is provably correct, can encode a sufficiently large class of languages, and can produce representations that are rich enough to support semantic interpretation.

The existence of probabilistic data, which we can use as indirect negative evidence, allows us to control for over-generalisation. DLGs provide a very rich framework which can encode the sorts of problems that give rise to the negative results on learning that we have cited. We should not be surprised, then, to find that uniform learning of an entire class in this framework may be hard. So it will certainly be possible to construct combinations of distributions and examples where the learning problem is difficult. But it is crucial to understand that this is a consequence of the fact that the framework is expressive enough to represent a broad class of natural languages.

\(^{10}\) In some circumstances, the derived structural descriptions will not be trees, but non-tree directed acyclic graphs. This will generally be the case when the language is not context-free.
distinguish the assumptions that we make about the learner from those that we adopt for the environment. We can assume that the environment for language learning is generally benign, but we do not need to attribute knowledge of this fact to the learner.

In the context of the argument from the poverty of the stimulus, we are interested in identifying the minimal initial information which we must assume that the learner has in order to account for acquisition. We are making the following claim for DLGs. In order for acquisition of DLGs to proceed we need to hypothesize a bias for paying attention to the relation between sub-strings and their contexts, and an ability to construct concept lattices (Ganter
&Wille (1997)). The representational formalism and the learning algorithm both follow naturally from these assumptions. Additionally we need to posit a robust mechanism for dealing with noise and sparsity of data. Our second claim is that these mechanisms are adequate for representing a large amount of natural language.

We acknowledge that these claims require substantial empirical support, which has yet to be delivered. We do know that there are a wide range of efficient algorithms for the inference of large classes of context free languages, where these were not available as recently as ten years ago. The exact limits of the approach to learning that we are suggesting have not yet been fully explored. However, the results that we have briefly described here give some reason to think that language acquisition is computationally possible on the basis a set of minimal learning biases. The extent to which these biases are truly domain-general is a subject for future discussion.

7 Machine Learning and Grammar Induction: Some Empirical Results

In the previous sections we have considered the problem of efficient learnability for the class of natural languages from the perspective of formal learning theory. This has involved exploring mathematical properties of learning for different sorts of representation types, under specified conditions of data, time, and computational complexity. In recent years there has been a considerable amount of experimental work on grammar induction from large corpora. This research is of a largely heuristic kind, and it has yielded some interesting results.\footnote{For a more detailed discussion of this applied research in grammar induction see Clark & Lappin (2010a).} In this section we will briefly review some of these experiments and discuss their implications for language acquisition.
7.1 Grammar Induction through Supervised Learning

In supervised learning the corpus on which a learning algorithm A is trained is annotated with the parse structures that are instances of the sort of representations which A is intended to learn. A is tested on an unannotated set of examples disjoint from its training set. It is evaluated against the annotated version of the test set, which provides the gold standard for assessing its performance.\footnote{Devising reasonable evaluation methods for natural language processing systems in general, and for grammar induction procedures in particular raises difficult issues. For a discussion of these see Resnik & Lin (2010) and Clark & Lappin (2010a).}

A’s parse representations for a test set TS are scored in two dimensions. Its \textit{recall} for TS is the percentage of parse representations from the gold standard annotation of TS that A returns. A’s \textit{precision} is the percentage of the parse structures that it returns for TS which are in the gold standard. These percentages can be combined as a weighted mean to give A’s F_1-score.\footnote{Recall, precision, and F-measure were first developed as metrics for evaluating information retrieval and information extraction systems. See Grishman (2010) and Jurafsky & Martin (2009) on their application within NLP.}

The Penn Treebank (Marcus (1993)) is a corpus of text from the Wall Street Journal that has been hand annotated for lexical part of speech (POS) class for its words, and syntactic constituent structure for its sentences. A Probabilistic Context Free Grammar (PCFG) is a context-free grammar whose rules are assigned a probability value in which the probability of the sequence of symbols $C_1 \ldots C_k$ on the right side of each rule is conditioned on the occurrence of the non-terminal symbol C_0 on the left side, which immediately dominates it in the parse structure. So $P(C_0 \rightarrow C_1 \ldots C_k) = P(C_1 \ldots C_k|C_0)$.

For every non-terminal C in a PCFG, the probabilities for the rules $C \rightarrow \alpha$ sum to 1. The probability of a derivation of a sequence α from C is the product of the rules applied in the derivation. The probability that the grammar assigns to a string s in a corpus is the sum of the probabilities that the grammar assigns to the derivations for s. The distribution D_G that a PCFG specifies for a language L is the set of probability values that the grammar assigns to the strings in L. If the grammar is consistent, then $\sum_{s \in T^*} D_G(s) = 1$, where T^* is the set of strings generated from T, the set of the grammar’s terminal symbols.

The probability values of the rules of a PCFG are its parameters. These can be estimated from a parse annotated corpus by Maximum Likelihood Estimation (MLE) (although more reliable techniques for probability estimation are available).

\begin{equation}
\frac{c(C_0 \rightarrow C_1 \ldots C_k)}{c(C_0 \rightarrow \gamma)}
\end{equation}
where \(c(R) \) = the number of occurrences of a rule \(R \) in the annotated corpus.

The performance of a PCFG as a supervised grammar learning procedure improves significantly when it is supplemented by lexical head dependencies. In a *Lexicalized Probabilistic Context Free Grammar* (LPCFG), the probability of the sequence of symbols on the right side of a CFG rule depends on the pair \(\langle C_0, H_0 \rangle \). \(C_0 \) is the symbol that immediately dominates the sequence (the left hand side of the rule), and \(H_0 \) is the lexical head of the constituent that this symbol encodes, and which the sequence instantiates.

Collins (1999, 2003) constructs a LPCFG that achieves an F-score of approximately 88% for a WSJ test set. Charniak & Johnson (2005) improve on this result with a LPCFG that arrives at an F-score of approximately 91%. This level of performance represents the current state of the art for supervised grammar induction.

Research on supervised learning has made significant progress in the development of accurate parsers for particular domains of text and discourse. However, this work has limited relevance to human language acquisition. The PLD to which children are exposed is not annotated for morphological segmentation, POS classes, or constituent structure. Even if we grant that some negative evidence is contained in the PLD and plays a role in grammar induction, it is not plausible to construe language acquisition as a supervised learning task of the kind described here.

7.2 Unsupervised Grammar Induction

In unsupervised learning the algorithm is trained on a corpus that is not annotated with the structures or features that it is intended to produce for the test set. It must identify its target values on the basis of distributional properties and clustering patterns in the raw training data. There has been considerable success in unsupervised morphological analysis across a variety of languages (\(?, \) Goldsmith (2010), Schone & Jurafsky (2001)). Reliable unsupervised POS taggers have also been developed (Schütze (1995), Clark (2003)).

Early experiments on unsupervised parsing did not yield promising results (Carroll & Charniak (1992)). More recent work has produced systems that are starting to converge on the performance of supervised grammar induction. Klein & Manning (2004) (K&M) present an unsupervised parser that combines a constituent structure induction procedure with a head dependency learning method.\(^{14}\)

K&M’s constituent structure induction procedure determines probabilities for all subsequences of POS tagged elements in an input string, where each subsequence is taken as a potential constituent for a parse tree. The procedure

\(^{14}\) See Bod (2006, 2007a,b, 2009) for an alternative, largely non-statistical, method of unsupervised parsing.
invokes a binary branching requirement on all non-terminal elements of the tree. K&M use an Expectation Maximization (EM) algorithm to select the parse with the highest probability value. Their procedure identifies (unlabeled) constituents through the distributional co-occurrence of POS sequences in the same contexts in a corpus. It partially characterizes phrase structure by the condition that sister phrases do not have (non-empty) intersections. Binary branching and the non-overlap requirement are learning biases of the model which the procedure defines.

K&M’s unsupervised learning procedure for lexicalized head-dependency grammars assigns probabilities to possible dependency relations in a sentence S. It estimates the likelihood for every word w_i in S that w_i is a head for all of the subsequences of words to its left and to its right, taken as its syntactic arguments or adjuncts. The method computes the likelihood of these alternative dependency relations by evaluating the contexts in which each head occurs. A context consists of the words (word classes) that are immediately adjacent to it on either side. This procedure also imposes a binary branching condition on dependency relations as a learning bias.

K&M combine their dependency and constituent structure grammar systems into an integrated model that computes the score for a constituent tree structure as the product of the values assigned to its terminal elements by the dependency and constituency structure models. This method employs both constituent and head dependency distributional patterns to predict binary constituent parse structure. The method achieves an F-score of 77.6% when it applies to text annotated with Penn Treebank POS tagging, and an F-score of 72.9% when this test set is marked by Schütze (1995)’s unsupervised tagger. The latter case is a more robust instance of unsupervised grammar induction in that the POS tagging on which the learning procedure depends is itself the result of unsupervised word class identification.

7.3 Machine Learning and Language Acquisition

Fong & Berwick (2008) (F&B) argue that supervised parsers, like Collins’ LPCFG, do not acquire syntactic knowledge of the sort that characterizes the linguistic competence of native speakers. They run several experiments with variants of Collins’ grammar. Their results contain incorrect probabilities for wh-questions, putatively problematic parses for PP attachment cases, and (what they claim to be) some puzzling effects when non-grammatical word order samples are inserted in the data.

Some of the effects that F&B obtain are due to the very limited amount of training data that they employ, and the peculiarities of these samples. It might well be the case that if Collins’ LPCFG were trained on a large and suitably annotated subset of the CHILDES child language corpus (MacWhinney (1995)), it would yield more appropriate results for the sorts of cases that F&B consider.
But even if their criticisms of Collins’ parser are accepted, they do not undermine the relevance of machine learning to language acquisition. As we noted in Section 7.1, supervised learning is not an appropriate model for human learning, because the PLD available to children is not annotated with target parse structures. Work in unsupervised grammar induction offers more interesting insights into the sorts of linguistic representations that can be acquired from comparatively raw linguistic data through weak bias learning procedures. In order to properly evaluate the significance of this heuristic work for human language acquisition, it is necessary to train and to test machine learning algorithms on the sort of data found in the PLD.

Unsupervised grammar induction is a more difficult task than supervised parsing, and so we might expect F&B’s criticisms to apply with even greater force to work in this area. In fact, recent experimental research in unsupervised learning, such as K&M’s parsing procedure, indicates that it is possible to achieve accuracy approaching the level of supervised systems. Of course, these results do not show that human language acquisition actually employs these unsupervised algorithms. However, they do provide initial evidence suggesting that weak bias learning methods may well be sufficient to account for language learning. If this is the case, then positing strong biases, rich learning priors, and language specific learning mechanisms requires substantial psychological or neural developmental motivation. The APS does not, in itself, support these devices.

8 Conclusions and Future Research

We have considered the ways in which computational learning theory can contribute insights into language acquisition. We have seen that while formal learning models cannot replace empirically motivated psycholinguistic theories, they can provide important information on the learnability properties of different classes of grammatical representations. However, the usefulness of such models depends on the extent to which their basic assumptions approximate the facts of the human acquisition process.

We looked at two classical learning paradigms, IIL and PAC learning. Each of these has been the source of negative results that linguists have cited in support of the APS. When we examine these results closely we find that they do not, in fact, motivate a strong domain specific bias view of language acquisition. The results generally depend on assumptions that are implausible when applied to acquisition. In some cases, they have been inaccurately interpreted, and, on a precise reading, it becomes clear that they do not entail linguistic nativism.

We observed that the main challenge in developing a tractable algorithm for grammar induction is to constrain the computational complexity involved in inferring a sufficiently rich class of grammatical representations from the PLD. We looked at recent work on probabilistic learning models based on
a distributional view of syntax. This line of research has made significant progress in demonstrating the efficient learnability of grammar classes that are beginning to approach the level of expressiveness needed to accommodate natural languages.

A central element in the success of this work is the restriction of the set of possible distributions to those that facilitate learning in a way that corresponds to the PLD to which human learners are exposed. A second important feature is that it characterizes representational classes that are not elements of the Chomsky hierarchy, but run orthogonally to it. A third significant aspect of this work is that although the primitives of the grammars in the learnable classes that it specifies are sufficiently abstract to express interesting syntactic categories and relations, they can be easily identified from the data.

We then considered recent experiments in unsupervised grammar induction from large corpora, where the learning algorithms are of a largely heuristic nature. The results are encouraging, as the unsupervised parsers are beginning to approach the performance of supervised systems of syntactic analysis.

Both the formal and the experimental work on efficient unsupervised grammar induction are in their initial stages of development. Future research in both areas will need to refine the grammar formalisms used in order to provide a fuller and more accurate representation of the syntactic properties of sentences across a larger variety of languages. It is also important to explore the psychological credibility of the learning procedures that successful grammar induction systems employ. This is a rich vein of research that holds out the prospect of a rigorously formulated and well motivated computational account of learning in a central human cognitive domain.
References

