Subtree and Tree Pattern Pushdown Automata for Trees In Prefix Notation

Jan Janoušek and Bořivoj Melichar
{janousej,melichar}@fel.cvut.cz

Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University
Czech Republic
MOTIVATION

STRINGOLOGY
String suffix and factor automata.

PROPERTIES:

1. **Accept all occurrences of an input suffix and an input factor, respectively, in a text of size n.**

2. **Search phase for all occurrences of an input suffix or an input factor of size m in time $O(m)$, and not depending on n.**

3. **Although the number of factors in the text can be quadratic in n, the total size of the deterministic factor automaton is linear in n.**
MOTIVATION

ARBOLOGY

Subtree and tree pattern pushdown automata — ANALOGOUS TO STRING SUFFIX AND FACTOR AUTOMATA.

PROPERTIES:

1. Accept all occurrences of an input subtree and of subtrees matching an input tree pattern, respectively, in a tree of size n.

2. Search phase for all occurrences of an input subtree or an input tree pattern of size m in time $O(m)$, and not depending on n.

3. Although the number of tree patterns matching the tree can be exponential in n, the total size of the deterministic tree pattern pushdown automaton is linear in n.
SUBTREE PDA

EXAMPLE 1

- **Ranked alphabet**
 \[A = \{ a2, a1, a0 \} \]

- **Tree** \(t_1 \)
 Prefix notation is
 \[\text{pref}(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0 \]

- **Subtrees of** \(t_1 \) **in**
 Prefix notation are:
 \[
 \begin{align*}
 1 & : a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0 \\
 2 & : a2 \ a0 \ a1 \ a0 \\
 3 & : a1 \ a0 \\
 4 & : a0
 \end{align*}
 \]
ALL SUBTREES OF TREE t_1 AND THEIR PREFIX NOTATION

```
   a2
   / \
  a2 a1
 /     / \
a0    a0 a0

   a2
   / \
  a2 a0
 /     / \
a0    a1 a0

   a2
 / \
 a0 a1
 /     / \
 a0 a0 a0

   a2
 / \
 a2 a0
 /     / \
 a0 a1 a0

   a1
 / \
 a1 a0
 /     / \
 a0 a0 a0

   a1
   / \
   a1
    /     / \
   a0 a0 a0
```

$a2$ $a2$ $a0$ $a1$ $a0$ $a1$ $a0$

$a2$ $a0$ $a1$ $a0$

$a1$ $a0$ $a0$

$a1$ $a0$

$a0$
Theorem 1

Given a tree t **and its prefix notation** $\text{pref}(t)$, **all subtrees of** t **in prefix notation are substrings of** $\text{pref}(t)$.
Example 1, contd.

Transition diagram of deterministic PDA $M_p(t_1)$ accepting $\text{pref}(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0$ by empty pushdown store

Initial contents of pushdown store is S.
TRACE OF DETERMINISTIC PDA $M_p(t_1)$ FOR INPUT STRING $\text{pref}(t_1) = a2\ a2\ a0\ a1\ a0\ a1\ a0$

<table>
<thead>
<tr>
<th>State</th>
<th>Pushdown Store</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S</td>
<td>$a2\ a2\ a0\ a1\ a0\ a1\ a0$</td>
</tr>
<tr>
<td>1</td>
<td>S S</td>
<td>$a2\ a0\ a1\ a0\ a1\ a0$</td>
</tr>
<tr>
<td>2</td>
<td>S S S</td>
<td>$a0\ a1\ a0\ a1\ a0$</td>
</tr>
<tr>
<td>3</td>
<td>S S S</td>
<td>$a1\ a0\ a1\ a0$</td>
</tr>
<tr>
<td>4</td>
<td>S S S</td>
<td>$a0\ a1\ a0$</td>
</tr>
<tr>
<td>5</td>
<td>S</td>
<td>$a1\ a0$</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>$a0$</td>
</tr>
<tr>
<td>7</td>
<td>ε</td>
<td>ε</td>
</tr>
</tbody>
</table>

ACCEPT

ACCEPT BY EMPTY PUSHDOWN STORE.
Nondeterministic subtree PDA $M_{nps}(t_1)$ for tree t_1 in prefix notation

$\text{pref}(t_1) = a2 a2 a0 a1 a0 a1 a0$
TRANSFORMATION TO DETERMINISTIC PDA

INPUT-DRIVEN PDA – pushdown store operations are determined by the input symbol.

Any nondeterministic input–driven PDA can be determinised similarly as in the case of finite automata – the states of the deterministic PDA correspond to subsets of states of the nondeterministic PDA (d–subsets).

Moreover, nondeterministic acyclic input–driven PDA – the contents of the pushdown store can be precomputed, and only transitions and states with possible pushdown operations are selected.
Deterministic subtree PDA $M_{dps}(t_1)$ for tree in prefix notation $\text{pref}(t_1) = a_2 \ a_2 \ a_0 \ a_1 \ a_0 \ a_1 \ a_0$
Trace of deterministic subtree PDA $M_{dps}(t_1)$ for an input subtree st in prefix notation

$pref(st) = a_1 a_0$

<table>
<thead>
<tr>
<th>STATE</th>
<th>PDS</th>
<th>INPUT</th>
<th>INPUT SUBTREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>{0}</td>
<td>S</td>
<td>a_1</td>
<td>a1</td>
</tr>
<tr>
<td>{4, 6}</td>
<td>S</td>
<td>a_0</td>
<td>a0</td>
</tr>
<tr>
<td>{5, 7}</td>
<td>ε</td>
<td>ε</td>
<td></td>
</tr>
<tr>
<td>ACCEPT</td>
<td></td>
<td></td>
<td>a0</td>
</tr>
</tbody>
</table>
TREE PATTERN PDA

Deterministic treetop PDA $M_{pt}(t_1)$ **for tree** t_1 **in prefix notation** $\text{pref}(t_1) = a_2 \ a_2 \ a_0 \ a_1 \ a_0 \ a_1 \ a_0$
Nondeterministic tree pattern PDA $M_{npg}(t_1)$ for $\text{pref}(t_1) = a2\ a2\ a0\ a1\ a0\ a1\ a0$
Deterministic tree pattern PDA $M_{dpq}(t_1)$ for tree t_1 in prefix notation

$\text{pref}(t_1) = a_2 \; a_2 \; a_0 \; a_1 \; a_0 \; a_1 \; a_0$
Trace of deterministic PDA M_{dpg} for prefix notation of tree pattern $a_2 \text{ } S \text{ } a_1 \text{ } S$

<table>
<thead>
<tr>
<th>STATE</th>
<th>PDS</th>
<th>INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>{0}</td>
<td>S</td>
<td>$a_2 \text{ } S \text{ } a_1 \text{ } S$</td>
</tr>
<tr>
<td>{1, 2}</td>
<td>SS</td>
<td>$S \text{ } a_1 \text{ } S$</td>
</tr>
<tr>
<td>{3, 5}</td>
<td>S</td>
<td>$a_1 \text{ } S$</td>
</tr>
<tr>
<td>{4, 6}</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>{5, 7}</td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>ACCEPT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input tree template:

```
    a2
   /   |
S    a1
     /|
     S
```
Theorem 3

Given a tree t with n nodes and its prefix notation $\text{pref}(t)$, the numbers of states and transitions of the deterministic tree pattern PDA $M_{dpg}(t)$ are $\mathcal{O}(n)$.

(Although the number of distinct tree templates matching the tree is less or equal 2^{n-1})
Example 2

TREE t_2, $\text{pref}(t_2) = am a0^m$

Deterministic tree pattern PDA for $\text{pref}(t_2)$:
Example 3

TREE t_3, $\text{pref}(t_3) = a_1^m a_0$

Deterministic tree pattern PDA for $\text{pref}(t_3)$:

```
S | S \rightarrow \varepsilon
```

```
S \rightarrow S
S \rightarrow S
S \rightarrow S
S \rightarrow S
```

```
as_1 \rightarrow S
as_1 \rightarrow S
as_1 \rightarrow S
as_1 \rightarrow S
```

```
\{0\} \rightarrow \{1, 2, 3, \ldots, m\} \rightarrow \{2, 3, \ldots, m\} \rightarrow \{3, \ldots, m\} \rightarrow \ldots \rightarrow \{m\} \rightarrow \{m + 1\}
```

```
as_1 \rightarrow S
a_0 | S \rightarrow \varepsilon
a_1 | S \rightarrow S
```

```
as_0 \rightarrow \varepsilon
```

```
\varepsilon
\varepsilon
\varepsilon
\varepsilon
```
WEB PAGES
http://www.arbology.org
http://www.arbology.com
COMING SOON ...
Tree Languages, Tree Automata and Deterministic Pushdown Automata

Regular tree languages are accepted by finite tree automata.

Deterministic pushdown automata accept a proper superclass of the regular tree languages in prefix or postfix notation.

This is proved in:

This paper contains also algorithm of transformation of any finite tree automaton to an equivalent deterministic pushdown automaton.