Extremal Out-branchings and Out-trees in Digraphs

Gregory Gutin

Department of Computer Science
Royal Holloway, University of London

February 2008
Outline

1. Introduction
2. Classic Complexity
3. Fixed-Parameter Complexity
Outline

1. Introduction
2. Classic Complexity
3. Fixed-Parameter Complexity
We say that a subdigraph T of a digraph D is an **out-tree** if T is an oriented tree with only one vertex s of in-degree zero (its **root**).

The vertices of T of out-degree zero are **leaves**.

If T is a spanning out-tree, i.e. $V(T) = V(D)$, then T is an **out-branching** of D.

A digraph D has an out-branching iff D has only one initial strong component (a strong component C is **initial** if there are no arcs entering C).
Out-Branching Example
Outline

1 Introduction

2 Classic Complexity

3 Fixed-Parameter Complexity
MinLeafOBranch: Find an out-branching with minimum number of leaves (NP-hard)

MinLeafOBranch on acyclic digraphs: polynomial-time solvable

MaxLeafOBranch: Find an out-branching with maximum number of leaves (NP-hard even for undirected graphs)

MaxLeafOTree: Find an out-branching with maximum number of leaves (NP-hard)
MinLeafOBBranch on Acyclic Digraphs

Algorithm: $D \rightarrow B(D) \rightarrow M \rightarrow M^* \rightarrow T$
Out-Trees vs Out-Branchings-1

- $\ell_T(D)$ max no. leaves in an out-tree
- $\ell_B(D)$ max no. leaves in an out-branching
- $\ell_B(D) = \ell_T(D)$ or 0 for many digraphs including strong digraphs, acyclic digraphs, semicomplete multipartite digraphs, quasi-transitive digraphs, etc. (family \mathcal{L} of digraphs); all undirected graphs are in \mathcal{L}.
There are many digraphs outside \mathcal{L}:
$\ell_B(D) = 1$, $\ell_T(D) = n - 2$. $D \notin \mathcal{L}$.
Outline

1. Introduction
2. Classic Complexity
3. Fixed-Parameter Complexity
Definition
A parameterized problem Π can be considered as a set of pairs (I, k) where I is the problem instance and k (usually an integer) is the parameter.

Definition
Π is called fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in time $O(f(k)|I|^c)$, where $|I|$ is the size of I, $f(k)$ is a computable function, and c is a constant independent from k and I.
Parameterized MaxLeafOT (M. Fellows)

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is it FPT to check whether there is an out-tree with at least k leaves?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $D \in \mathcal{L}$. Then either $\ell_B(D) \geq k$ or the underlying graph of D is of pathwidth $\leq 2k^2$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fact</th>
</tr>
</thead>
</table>
| Let R_v be the set of vertices reachable from v. Then $D[R_v] \in \mathcal{L}$. Also, $\ell_T(D) = \max \{ \ell_B(D[R_v]) : v \in V(D) \}$.

<table>
<thead>
<tr>
<th>Theorem (Alon, Fomin, G., Krivelevich, Saurabh, ICALP’07)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The problem is FPT.</td>
</tr>
</tbody>
</table>

1-Opt OB [Alon, Fomin, G., Krivelevich, Saurabh, FSTTCS’07]
Parameterized MaxLeafOB (M. Fellows)

Problem

Is it FPT to check whether there is an out-branching with at least k leaves?

Theorem (Bonsma and Dorn, 2007)

The problem is FPT.

Similar to Alon et al. but:

- Delete *useless* arcs from D
- Using an 1-Opt out-branching and some of its backward arcs, try to construct an out-branching with at least k leaves. If no success, then pathwidth($UG(D)$) $\leq 6k^3$.
Parameterized Problems for MinLeafOBBranch [G., Kim and Razgon, 2008]

- Check whether there is an out-branching with at most \(k \) leaves. It is NP-complete for each fixed integer \(k > 0 \).
- Check whether there is an out-branching with at most \(n/k \) leaves. It is NP-complete for each fixed integer \(k > 0 \).
- Check whether there is an out-branching with at most \(n - k \) leaves (i.e., at least \(k \) non-leaves). It is FPT.
Parameterized MinLeafOBranch: Definitions

Let T be an out-branching. The parent x of a leaf is of type 1 (2) if $d^+(x) = 1$ ($d^+(x) > 1$). A leaf is of type i if its parent is of type i. An out-branching T is normalized if there is no arc uv in D such that u and v are leaves and v is of type 2.

Fact

The set of leaves of type 2 is independent and the non-leaves and leaves of type 1 form a vertex cover.
Parameterized MinLeafOBranching: Results

Fact
A normalized out-branching can be found in polynomial time.

Theorem
Either D has an OB with at most $n - k$ leaves or $UG(D)$ has a vertex cover of size at most $2k - 3$ (obtained from a normalized OB).

Corollary
There is a polytime algorithm that either finds an OB with at most $n - k$ leaves or a tree decomposition of $UG(D)$ of width at most $2k - 3$.

Theorem
There is an algorithm of runtime $O(2^{O(k \log k)} + n^2 \log n)$.