Subset Seeds on a Reconfigurable Architecture

LAW 2007

Gilles Georges* Mathieu Giraud• Julien Jacques*
Gregory Kucherov• Dominique Lavenier* Laurent Noé•
Pierre Peterlongo*

INRIA, (* IRISA Rennes Symbiose & • Lille LIFL Séquoia)

21 Septembre 2006
Overview

Motivations

Subset seeds

Where are we now?

Specialized architecture

Conclusion
<table>
<thead>
<tr>
<th>Motivations</th>
<th>Subset seeds</th>
<th>Where are we now?</th>
<th>Specialized architecture</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Motivations

Subset seeds

Where are we now?

Specialized architecture

Conclusion
Motivations Subset seeds Where are we now? Specialized architecture Conclusion

Biological Data evolution

EMBLa Data size evolution:

Data type evolution:

- Take the “Junk DNA” into account

\begin{itemize}
 \item \texttt{http://www.ebi.ac.uk/embl/} - Europe’s primary nucleotide sequence resource
\end{itemize}

Large augmentation of amount of data
Main goal of the study

Biological similarities detection

Improvements of BLAST1-like programs:

- Faster execution
- Larger amount of data
- More sensitive results

\[\text{Altschul, S.; Gish, W.; Miller, W.; Myers, E. & Lipman, D. Basic Local Alignment Search Tool Journal of Molecular Biology, 1990, 215, 403-410}\]
Overview

Motivations

Subset seeds

Where are we now?

Specialized architecture

Conclusion
Seeds - Basic Ideas

Computing local alignments, using dynamic programming
Seeds - Basic Ideas

1. Detect matching seeds - indexation
Seeds - Basic Ideas

1. Detect matching seeds - indexation
2. Extend to neighbors
Seeds - Basic Ideas

1. Detect matching seeds - **indexation**
2. Extend to neighbors
3. Perform alignments
Representation, specificity and sensitivity

- ### : “classical’ seed
Seeds - Sensitivity and Specificity

Representation, specificity and sensitivity

- ### : "classical" seed
- # : Low specificity & High sensitivity
 (Slow and precise)
Seeds - Sensitivity and Specificity

Representation, specificity and sensitivity

- ### : "classical" seed
- # : Low specificity & High sensitivity (Slow and precise)
- ####### : High specificity & Low sensitivity (Fast and imprecise)
Seeds - Sensitivity and Specificity

Representation, specificity and sensitivity

- ### : "classical" seed
- # : Low specificity & High sensitivity
 (Slow and precise)
- ####### : High specificity & Low sensitivity
 (Fast and imprecise)

What is the good seed?

Main difficulty: design seeds to have best ratio
specificity v.s. sensitivity.
Spaced2 seeds

<table>
<thead>
<tr>
<th>ATCAGTGCAATGCTCAAGA</th>
<th>ATCAGTGCAATGCTCAAGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCAGCGCGATGCGCAAGA</td>
<td>ATCAGCGCGATGCGCAAGA</td>
</tr>
<tr>
<td># # # # # # # # # #</td>
<td># # # - - # - # #</td>
</tr>
</tbody>
</table>

Spaced2 seeds

ATCAGTGC A ATGCTCA AGA

ATCAGCGCGATGC GCA AGA

ATCAGT GCA ATGCTCA AGA

ATCAGCGCGATGC GCA AGA

Spaced2 seeds

<table>
<thead>
<tr>
<th>ATCA GTGCA ATGCTCA AGA</th>
<th>ATCA GTGCA ATGCTCA AGA</th>
</tr>
</thead>
<tbody>
<tr>
<td># # # # # # # # #</td>
<td># # - - # - # #</td>
</tr>
<tr>
<td># # # # # # # #</td>
<td># # - - # - # #</td>
</tr>
<tr>
<td></td>
<td># # - - # - # #</td>
</tr>
</tbody>
</table>

Spaced2 seeds

ATCAGTGC AATGCTC AAGA

ATCAGCGCG ATGC GCC AAGA

Spaced seeds

ATCAGTGCAATGCTCAAGA

- - - - - -

ATCAGCGCGATGCGCAAGA

- - - - - -

- - - - - -

- - - - - -

Spaced seeds have better sensitivity
Multiple3 spaced seeds

Instead of a unique Spaced seed
\{###--##-#\} (weight 6)

Multiple^3 spaced seeds

Instead of a unique Spaced seed
{###- -#-##} (weight 6)

Use a set of spaced seeds
{###- -#-###, (weight 7)
#- -###-#-##, (weight 7)
#- - ###- -##-#, (weight 7)
...}

Multiple3 spaced seeds

Instead of a unique Spaced seed
\{###- -#-##\} (weight 6)

Use a set of spaced seeds
\{
 ###- -#-###, (weight 7)
 #- -####-#-##, (weight 7)
 # - ###- -##-#, (weight 7)
 \ldots
\}\n
Advantages and drawback

:-) Better sensitivity
:-(Higher memory usage, (and slower)

Subset seeds (protein example)

C	S	T	P	A	G	N	D	E	Q	H	R	K	M	I	L	V	F	Y	W	
C	9																			
S	-1	4																		
T	-1	1	5																	
P	-3	-1	-1	7																
A	0	1	0	-1	4															
G	-3	0	-2	-2	0	6														
N	-3	1	0	-2	-2	0	6													
D	-3	0	-1	-1	-2	-1	1	6												
E	-4	0	-1	-1	-2	-2	0	2	5											
Q	-3	0	-1	-1	-2	0	0	2	5											
H	-3	-1	-2	-2	-2	-2	1	1	0	0	8									
R	-3	-1	-1	-2	-2	-2	0	-2	0	1	0	5								
K	-3	0	-1	-1	-2	-1	0	-1	1	1	-1	2	5							
M	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5						
I	-1	-2	-1	-2	-3	-1	-4	-3	-3	-3	-3	-3	-3	1	4					
L	-1	-2	-1	-2	-3	-1	-4	-3	-4	-3	-2	-2	-2	2	2	4				
V	-1	-2	0	-2	0	-3	-3	-2	-2	-2	-2	-2	-2	1	3	1	4			
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6		
Y	-2	-2	-2	-3	-2	-3	-2	-2	-2	-2	-2	-1	-1	-1	3	7				
W	-2	-3	-2	-4	-3	-2	-2	-2	-2	-2	-2	-1	-3	-2	-3	1	2	1	1	

Subset seeds (protein example)

	C	S	T	P	A	G	N	D	E	Q	H	R	K	M	I	L	V	F	Y	W		
C	9																					
S	-1	4																				
T	-1	1	5																			
P	-3	-3	-1	-1	-1	-1	7															
A	0	0	0	-1	0	-1	4															
G	-3	0	-2	-2	0	6																
N	-3	1	0	-2	-2	0	6															
D	-3	0	-1	-1	-2	-1	1	6														
E	-4	0	-1	-1	-1	-2	0	2	5													
Q	-3	0	-1	-1	-1	-2	0	0	2	5												
H	-3	-1	-2	-2	-2	-2	1	-1	0	0	8											
R	-3	-1	-1	-2	-2	-2	0	-2	0	1	0	5										
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5									
M	-1	-1	-2	-1	-3	-3	-2	-2	-1	-1	5											
I	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	1	4										
L	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	2	2	4									
V	-1	-2	0	-2	0	-3	-3	-2	-2	-3	2	2	4									
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	1	3	1	4								
Y	-2	-2	-2	-3	-2	-3	-3	-3	-3	-3	1	3	7									
W	-2	-3	-2	-4	-3	-2	-4	-3	-3	-2	1	2	1									

All amino acids are not equivalents

- Create groups of characters
Subset seeds (protein example)

C	S	T	P	A	G	N	D	E	Q	H	R	K	M	I	L	V	F	Y	W			
9																						
4																						
5																						
7																						
4																						
6																						
2																						
2																						

All amino acids are not equivalents

- Create groups of characters

- CFYWMLIVGPATSNHQEDRK

@1 C, STPAG, NDEQ, HRK, MILV, FYW

@2 CFYWMLIV, GPATSNHQEDRK

12/21
So what?

Design good set(s) of subset (spaced) seeds

- Speed
- Memory
- Specificity
- Sensitivity
Overview

Motivations

Subset seeds

Where are we now?

Specialized architecture

Conclusion
Seed tester

- Test quickly sensitivity (and possibly specificity)
- A few minutes
- Specificity is longer, ⇒ statistical computation is preferred
• Necessity to pre-compute *perfect* alignments
Today

- Chromosomes 1, 2 and 19 treated
- 3273 Alignments found

First results

Selection of a Subset seeds:

- Find 98% of alignments while BLAST finds 96% of alignment.
- The 2% difference is biologically relevant.
Overview

<table>
<thead>
<tr>
<th>Motivations</th>
<th>Subset seeds</th>
<th>Where are we now?</th>
<th>Specialized architecture</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Motivations

Subset seeds

Where are we now?

Specialized architecture

Conclusion
Motivations
Subset seeds
Where are we now?
Specialized architecture
Conclusion

ReMIX, Overall presentation

- 512 GB FLASH memory (indexation, step 1)
- FPGA : Compute approximatively 8×160 ungaped alignments simultaneously in 50 clock cycles (step 2)
- A clock cycle $\Rightarrow 25.10^{-9}$ seconds
ReMIX, Overall presentation

- 512 GB FLASH memory (indexation, step 1)
- FPGA : Compute approximatively 8×160 ungaped alignments simultaneously in 50 clock cycles (step 2)
- 1024 millions of ungaped alignments (neighbor) per second
ReMIX, Biological application

- Index computed once
- Query, parsed on the fly
ReMIX, Biological application

- Index computed once
- Query, parsed on the fly
- done seed ### (prototype, speed up 75)
- todo all others...
<table>
<thead>
<tr>
<th>Motivations</th>
<th>Subset seeds</th>
<th>Where are we now?</th>
<th>Specialized architecture</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subset seeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where are we now?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialized architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conclusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

Goal

- BLAST-like programs:
 - Take larger amount of data
 - Increase speed
 - Increase sensitivity
Conclusion

Goal

- BLAST-like programs:
 - Take larger amount of data
 - Increase speed
 - Increase sensitivity

Done

- Subset seeds
- Framework for subset seeds testing
- (In progress) Implementation on ReMIX

21/21
Conclusion

Goal

- BLAST-like programs:
 - Take larger amount of data
 - Increase speed
 - Increase sensitivity

Done

- Subset seeds
- Framework for subset seeds testing
- (In progress) Implementation on ReMIX

To be done

- Investigation on subset seeds (98 %, 99 %, [99.9 % ?])
- Feed the seed tester with new alignements
- Implementation, tests, distribution